
On the Hardware-Software Partitioning
Problem: System Modeling and
Partitioning Techniques

MARISA LÓPEZ-VALLEJO
Universidad Politécnica de Madrid
and
JUAN CARLOS LÓPEZ
Universidad Castilla-La de Mancha

This paper presents an in-depth study of several system partitioning procedures. It is based on
the appropriate formulation of a general system model, being therefore independent of either the
particular co-design problem or the specific partitioning procedure. The techniques under study are
a knowledge-based system and three classical circuit partitioning algorithms (Simulated Anneal-
ing, Kernighan&Lin and Hierarchical Clustering). The former has been entirely proposed by the
authors in previous works while the later have been properly extended to deal with system level
issues. We will show how the way the problem is solved biases the results obtained, regarding both
quality and convergence rate. Consequently it is extremely important to choose the most suitable
technique for the particular co-design problem that is being confronted.

Categories and Subject Descriptors: J.6 [Computer-Aided Engineering]—computer-aided design

General Terms: Algorithms, Performance, Design

Additional Key Words and Phrases: Hardware-software co-design, hardware-software partitioning,
system modeling, general optimization procedures, clustering, cost functions, expert systems, fuzzy
logic

1. INTRODUCTION

Hardware-software partitioning deals with the assignment of parts of a system
description to heterogeneous implementation units: ASICs (hardware), stan-
dard or embedded microprocessors (software), memories, and so forth. This

This work has been partially supported by the Spanish Ministry of Science and Technology under
project CORE, TIC2000-0583-CO2.
Authors’ addresses: M. López-Vallejo, Dpto. Ingenieria Electronica, ETSI Telecomunicacion, Ciudad
Universitaria s/n, 28040 Madrid, Spain; email: marisa@die.upm.es; J. C. López, Escuela Superior
de Inforrmática Paseo de la Universidad, 4, 13071 Ciudad Real, Spain; email: juancarlos.lopez@
uclm.es.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2003 ACM 1084-4309/03/0700-0269 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003, Pages 269–297.

270 • M. López-Vallejo and J. C. López

is a key task in system level design, because the decisions made during this
step directly impact the performance and cost of the final implementation.
Hardware-software codesign addresses the development of these complex het-
erogeneous systems looking for the best trade-offs among the different solu-
tions. Several problems can be considered under the codesign paradigm [Micheli
1994]:

—ASIPs synthesis (Application Specific Instruction-set Processor).
—Execution acceleration by means of custom-computing machines.
—Design of System-on-a-chip (ASICs with embedded processor cores).
—Embedded-systems design.

The aim of the partitioning task is to find a design implementation that ful-
fills all the specification requirements (functionality, goals and constraints) at a
minimum cost. In the traditional design strategies, the system designer decided
which blocks of the system could be implemented in hardware and which could
be realized as software running on a standard processor, taking into account
his/her own knowledge as an expert in the field. To automate such a difficult
labor, several algorithms and techniques have been developed in different co-
design environments [Ernst et al. 1993; Gupta and Micheli 1993; Kalavade and
Lee 1997; Vahid 1997; Eles et al. 1997; López Vallejo et al. 1999]. All these ap-
proaches can work perfectly within their own codesign environments, but due
to the enormous differences among them, it is not possible to compare the re-
sults obtained. In order to qualitatively and quantitatively analyze all these
techniques we have formulated a common model for a general codesign envi-
ronment, and we have implemented some of these techniques over this model.

In this paper, we present an in-depth analysis of system partitioning tech-
niques. The implementation of the different methods is strongly based on the
construction of a model whose generality will allow us to deal with different
codesign problems and to find the best implementation for the particular prob-
lem being tackled. As a result of this study a better knowledge of the problem
has been obtained, as well as a better understanding of the methods and their
ranges of application.

The paper is structured as follows. First, other approaches to the problem
will be reviewed. The next section presents the problem formulation used as
a foundation for the different techniques. After that, several partitioning tech-
niques will be introduced, outlining their major features. The paper ends with
a summary of the results and some conclusions.

2. RELATED WORK

Important work has been done in hardware-software partitioning in recent
years. Nevertheless, a comparison among the different solutions is almost im-
possible, because of the large differences in the co-design environments and
the lack of benchmarks. We can enumerate many basic aspects that char-
acterize a system partitioning environment, apart from the particular tech-
nique or algorithm chosen. For instance, some of them are the initial specifica-
tion, which fixes the abstraction level, the kind of application the environment

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 271

Table I. Technical Characteristics of the Partitioning Task in Several Codesign Environments

Group Specification Application Grain Algorithm Model Architecture

Vulcan
[Gupta 1993]

HardwareC Data
oriented

Fine
(instructions)

Group
Migration

DFG Set Standard

Cosyma
[Ernst 1993]

C Data
oriented

Fine (basic
blocks)

Simulated
Annealing

Syntactic
tree

Standard

Ptolemy
[Kalavade
1997]

Silage Real Time Coarse
(tasks)

GCLP
(constructive
heuristic)

CDFG DSP based
embedded
system

Vahid [Vahid
1997]

SpechCharts Control Coarse
(processes)

Clustering,
min-cut, S.
Annealing

SLIF
(access
graph)

Standard

Lycos
[Madsen
1997]

C or VHDL Fine (basic
blocks)

Dynamic
Programming

Cadlab [Eles
1997]

VHDL - Coarse
(loops,
processes)

S. Annealing
Tabu Search

Process
Graph

Standard

DDEL
[Srinivasan
1998]

C and VHDL Data
oriented

Coarse
(tasks)

Genetic Task
Graph

Standard

Wolf [Wolf
1997]

Object
Oriented

Real Time Coarse
(tasks)

Heuristic Task
Graph

Parametric

focuses on (mainly data-intensive or control-oriented approaches), the model of
computation that has been chosen as representation and the selected granular-
ity. In this section we will review some of the previous approaches to hardware-
software partitioning that are important for their early appearance or their
novelty. Table I summarizes some of these groups and their major technical
characteristics. Those works more related to the partitioning procedures de-
scribed here will be analyzed in detail in the corresponding sections.

The two first algorithms that solved hardware-software partitioning were
presented by Cosyma and Vulcan. In Cosyma [Ernst et al. 1993], a simulated
annealing algorithm with fine granularity is applied. The initial specification
is an extension of the C programming language translated into a syntax graph.
The cost function minimizes the system execution time, extracting partitioning
objects (basic blocks) from software to hardware. Vulcan [Gupta and Micheli
1993] also uses fine granularity, language-level operations, obtained from the
initial specification in HardwareC. The partitioning algorithm is based on iter-
ative improvement, and extracts software blocks from an initial all-hardware
solution considering the timing constraints.

A coarse grain constructive algorithm was developed in Ptolemy [Kalavade
and Lee 1997] extending list-based scheduling. Two important points character-
ize this algorithm: (1) it is able to adapt the objective function to global or criti-
cal measures, and (2) different hardware implementations are considered. This
environment concentrates on real time applications implemented by means of
DSP-based architectures.

An important work in functional partitioning has been done by Vahid
et al. [Vahid 1997; Vahid and Gajski 1995a], applying classical partitioning

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

272 • M. López-Vallejo and J. C. López

algorithms to hardware-software architectures (including the K&L heuristic,
simulated annealing, clustering, etc.). As will be noted in the paper, this work
is strongly based on its intermediate format (SLIF).

The application of artificial intelligence techniques has proven its useful-
ness when dealing with the system partitioning problem. The DDEL group
[Srinivasan et al. 1998] performs system partitioning using a genetic algo-
rithm that includes hardware space exploration, following a coarse grain ap-
proach. Another recent approach based on genetic algorithms is proposed by
Dick et al. [Dick and Jha 1998], which considers power and real time in the op-
timization process. The expert system described in López Vallejo et al. [1999]
will be explained in depth in Section 5.

Many other important contributions could be commented on in this sec-
tion. For example, Cool [Niemann and Marwedel 1996] performs a hardware-
extraction approach by means of integer linear programming, the same pro-
cedure used by Madsen within the LYCOS co-synthesis system [Madsen et al.
1997]. Wolf [1997] postulates a coarse grain architectural algorithm for the
cosynthesis of distributed embedded computing systems. Eles et al. [1997] de-
scribe a comparison between simulated annealing and tabu search that will be
commented on in Section 4.1.

Finally, it is worth mentioning here the recent and interesting work
on flexible granularity proposed by Henkel et al. in [Henkel and Ernst
2001]. In this article an in-depth study on hardware-software partitioning
is presented, paying special attention to the use of different granularities,
the detailed description of estimation methodologies and the formulation
of a multidimensional objective function. The algorithm used in this ap-
proach is simulated annealing and will also be commented upon in depth in
Section 4.1.

3. SYSTEM MODEL FOR PARTITIONING

The resolution of a problem requires the definition of a model representing all
the important issues related to the specific problem. In this section, the system
partitioning problem will be characterized and its corresponding model [López
Vallejo 1999] will be defined.

The global information flow of the partitioning procedure presented here is
depicted in Figure 1. The input to the partitioning process is an execution flow
graph that comes from the initial system specification, described using high-
level specification languages. This is a directed and acyclic graph where vertices
stand for basic computation units and edges represent data and control depen-
dencies. Thus, vertices can be large pieces of information (tasks, processes, etc.)
or small ones (instructions, operations), following respectively a coarse or fine
granularity approach.

Every graph vertex is labeled with several attributes obtained after apply-
ing estimation procedures [Carreras et al. 1996]. In detail, these pieces of
information for a node vi are: hardware area (hai), hardware execution time
(hti), software memory size (ssi), software execution time (sti) and the aver-
age number of times the task is executed (ni). Edges have also associated a

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 273

Fig. 1. Flow of information within the partitioning model.

communication value (tcomm(i, j)) obtained from three components: the transfer
time (ttransf(i, j)), the synchronization time (tsynch(i, j)) and the average number
of times the communication takes place nij .

As is well known, system partitioning is clearly influenced by the target ar-
chitecture onto which the hardware and the software will be mapped. Here the
target architecture considered consists of one processor running the software,
several dedicated co-processors (based on ASIC or FPGA) and shared memory
accessed through a common bus. Interface modules are used to connect the
processor and the ASIC to the bus. This is a model in which we have used just
one hardware co-processor during our experiments for the sake of simplicity.
Hardware and software processes can be executed concurrently in the standard
processor and the application-specific co-processor.

In order to concentrate on the partitioning techniques, we have considered
this architecture model that is very restrictive and simplifies the problem in the
context of current architectures of embedded systems. Nevertheless, the model
we have used can be extended to consider current system on chip architectures,
as well as distributed embedded systems, supporting several programmable
processors and complex communication structures.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

274 • M. López-Vallejo and J. C. López

The outcome of the partitioning tool is not only an assignment of blocks to
hardware or software implementations, but also their scheduling (starting and
finishing time) and some information about the communication produced in the
interface.

The validity of the solution is measured by means of some design-quality
attributes which must perfectly describe the solution. These attributes are nor-
mally design costs and performance parameters. In particular, we have used
as quality attributes the required hardware area for the co-processor, Ap, the
design latency, Tp, calculated by scheduling the system graph, and the required
memory space, Mp.1 A design constraint is associated with each attribute. In
our case, we will have the maximum available area, A, the maximum allowed
execution latency T , and the maximum memory space, M .

Scheduling is implemented by means of a list-based scheduling algorithm.
The scheduler takes into account the timing estimates of every vertex in the
graph and the dependencies among them. As output, it gives the design la-
tency, Tp, and the communication cost produced in the hardware-software
interface.

Here we must define other important parameters, including the extreme val-
ues. These parameters are obtained through the extreme implementations, the
all-hardware and the all-software solutions. These parameters will be used as
a reference in the different techniques, bounding the constraint values. From
the all-hardware solution we obtain, MinT, the minimum design latency and
MaxA, the maximum hardware area. From the all-software solution we obtain
two more parameters: MaxT, the maximum design latency and MaxM, the max-
imum memory space. To ensure that we do not look for an impossible solution,
the system constraints must always verify: 0 ≤ A ≤ MaxA, 0 ≤ M ≤ MaxM
and MinT ≤ T ≤MaxT.

3.1 Problem Formulation

More formally, the hardware-software partitioning problem can be framed
as follows. Given a system description in the form of a task graph, directed
and acyclic, G= (V, E) where V is the set of vertices and E is the set of
edges, with a timing goal (for instance a latency T), a target architecture
D= (5, 01, 02, . . . ,ϒ) (where 5 stands for the standard processor, 0i repre-
sents the i-th hardware coprocessor and ϒ is the interface model) accompanied
by a set of architectural constraints (A, maximum hardware area, M , maxi-
mum memory size, B, bus transfer rate and W , bus width), and a cost function
that evaluates the quality of a given solution F : G⇒ [0,∞); the hardware-
software partition, P, is a function that assigns every vertex of G to a pro-
cessing unit of D with a starting time t ∈ [0,∞) while minimizing the cost

1Many other interesting quality attributes can be considered here. For instance, power consumption
is a key issue to look at in the case of portable embedded systems. This new attribute could be
included here once the corresponding estimation tool is implemented and the model can be extended
with a new parameter for the graph nodes: their estimate on power consumption.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 275

function F . Formally:

P : V⇒{5, 01, 02, . . . 0n} × [0,∞)/ ∀v∈V P(v)= (i, t) with

{
i ∈ {5, 01, . . . 0n}
t ∈ [0,∞)

F : G⇒ [0,∞) is minimized

It must also be verified that:

(1) ∀v1, v2 ∈V P(v1) 6=P(v2): condition of time-space exclusion.
(2) ∀v1, v2 ∈V/v1< v2, (< expresses an order relation) i f P(v1)= (i, t1)

and P(v2)= (j , t2)⇒ t1+ t(i, v1)< t2, condition of data dependencies
among vertices, where t : D×V⇒ [0,∞) is a function that provides for every
vertex v∈V, its execution time in the processing unit i ∈ {5, 01, . . . 0n}.

(3) If vend ∈V/∀vj ∈V, vj 6= vend, vj < vend, P(vend)= (k, tfin)⇒ tfin+ t(k, vend)≤T ,
condition of adjustment of time goal.

(4) Let 8hw be 8hw={vj ∈V, P(vj)= (k, t j)/k ∈ {01, . . . 0n}} it must be verified
that α(8hw) ≤ A, condition of adjustment of the area constraint, with α being
the function that estimates the coprocessor hardware area with relation to
8hw in a given point of the design space.

(5) Let 8sw be 8sw={vj ∈V, P(vj)= (k, t j)/k=5}; it must be verified that
µ(8sw) ≤ M , condition of adjustment of the memory size, with µ being the
function that evaluates the memory space needed to run a software code
with relation to 8sw.

4. CLASSICAL PARTITIONING METHODS

The introduction of system-level issues within classical circuit partitioning al-
gorithms is complex due to the different nature (hardware and software) of
the processing elements. Consequently, the application of these partitioning al-
gorithms requires strong modifications. In particular, the following algorithms
have been adapted to solve this problem: the simulated annealing stochastic al-
gorithm, the Kernighan&Lin heuristic (K&L in the following) and hierarchical
clustering techniques.

4.1 Simulated Annealing

Simulated annealing [Kirpatrick et al. 1983] is a well-known optimization pro-
cedure that emulates the physical annealing process. It can solve any combi-
natorial optimization problem if the quality of the proposed solution can be
measured by means of a cost function. This is the case of hardware-software
partitioning, which is why this method has been previously used to solve the
problem [Ernst et al. 1993; Eles et al. 1997]. Its major advantage is its gener-
ality, while its main drawback is the long computation time required.

For simulated annealing to work, two main issues must be resolved: the
cooling schedule and the cost function. We have used a dynamic cooling

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

276 • M. López-Vallejo and J. C. López

schedule [Huang et al. 1986] for two main reasons:

—This schedule, based on the statistical definition of parameters, allows the
algorithm to work on a range of problems and does not require the tuning of
the multiple algorithm parameters (cooling speed, equilibrium criteria, etc.)

—The algorithm convergence rate is much faster.

The formulation of the cost function is fundamental to obtaining good re-
sults. The next section is devoted to the formulation of a general and efficient
cost function [López Vallejo et al. 2000]. Other approaches based on simulated
annealing deal with the cost-function straight-forwardly (just to minimize the
execution time [Ernst et al. 1993]) or pay little attention to the cooling sched-
ule, consequently requiring the tuning the algorithm parameters for each exe-
cution [Eles et al. 1997]. Recent work [Henkel and Ernst 2001] has improved
these initial formulations and proposes the use of a dynamic cooling schedule
and defines a multi-objective function that trades diverse goals and constraints.
This is performed in a way similar to the one proposed here [López Vallejo et al.
2000], but only for area and performance metrics, while our formulation can
deal with many diverse attributes in a unified way.

4.1.1 Cost Function Formulation. The main goal of a cost function is to
measure the quality of a given solution and to guide the algorithm to the best
solution. As stated before, the important information related to system parti-
tioning is:

—The global cost associated with the solution, measured by the quality at-
tributes.

—The design constraints and goals.

Design constraints must define the design space and cost issues must help
measure the quality of the solution. The type of cost related to the quality
attributes must also be taken into account: fixed costs must be considered dif-
ferently than variable costs. Our formulation incorporates all these points.

The proposed cost function includes several correction terms, FC(), for each
design goal affected by a specific constraint [López Vallejo et al. 2000]. It can
be formulated as follows:

F(P)=
∑

i

ki × Ci(P)
Ci
+
∑

i

kciFC(Ci, Ci(P)) (1)

where Ci, the design constraint applied to the i-th quality attribute, Ci(P), of
a given solution P, has been used as a normalization parameter, and kci is the
weight factor for the correction terms.

Three different techniques can be used to correct the objective function:

—Mean Square Error Minimization, which helps the algorithm find a solution
tuned to the constraints.

—Barrier Techniques, which forbid the exploration of solutions outside the al-
lowed design space.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 277

—Penalty Methods, which strongly punish the exploration of solutions that
would produce medium or large constraints overhead, but allow the explo-
ration of regions close to the boundaries defined by the constraints.

A typical way of tuning system constraints is minimizing the mean square
error between quality attributes and their corresponding constraints. This kind
of expression adjusts the attributes to the design goals and constraints. These
functions can be applied to particular goals that should be completely fulfilled
instead of minimized. For instance, in the system partitioning problem, if the
target architecture includes an FPGA-based coprocessor, it is a good policy to
fully exploit all the resources the FPGA provides. This is due to the fact that
the FPGA has a fixed cost, and its maximum exploitation generally results
in performance improvement. Nevertheless, it would not be suitable for those
quality attributes that have variable cost, as they do in an ASIC area or timing
measures.

The general expression for Mean Square Error based correction terms is:

FC(Ci, Ci(P))= (Ci(P)− Ci)2

C2
i

(2)

This correction term, applied to the general expression shown in Equation (1),
only contributes to the cost of the final solution when the attribute adopts
a value not tuned to the constraint. We should note here that this kind of
correction term equally penalizes any deviation from the design objective.

Barrier functions [Luenberger 1984] provide a clear boundary around the
design space, in such a way that the cost associated with a solution outside of
the design space will be infinity. This is performed by placing asymptotes in
the boundaries defined by the constraints. The analytical expression for these
terms is:

FC(Ci, Ci(P))= 1
b[Ci, Ci(P)]

(3)

where b[Ci, Ci(P)] is the barrier function. An example of a barrier function can
be:

b[Ci, Ci(P)]=max {0, [Ci − Ci(P)]} (4)

This type of correction term can be used for hard design constraints, because
it ensures that the constraint will never be violated. However, its application
contributes to the final cost of valid design solutions, requiring a careful ad-
justment of the objective function weights and a modification of the final cost
interpretation.

Finally, when the system constraints are not too hard, the use of penalty
functions [Luenberger 1984] may be more suitable. Penalty functions do not
contribute to the cost function when the solution is in the allowed search space.
This kind of function is not so restrictive as the barrier functions, since solutions
around the border of the allowed exploration region can be accepted if they are
really close. At this point, the weight factor kci is extremely important.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

278 • M. López-Vallejo and J. C. López

A general expression for penalty functions is the following:

FC(Ci, Ci(P))= r2[Ci, Ci(P)] (5)

where the function r[Ci, Ci(P)] corresponds to:

r(Ci, Ci(P))=max
{

0,
[Ci(P)− Ci]

Ci

}
(6)

4.2 The Kernighan&Lin Heuristic

The original circuit partitioning heuristic was proposed by Kernighan and Lin
in 1970 [Kernighan and Lin 1970]. It is based on iterative improvement, but
allows the partitioning process to escape from some local minimum. The algo-
rithm starts with an initial random partition and swaps nodes between both
sides of the partition. All the nodes are interchanged following the order pro-
vided by the best gain (maximum decrease or minimum increment of nets in the
cut set). The best solution found during the swap process is recorded and used
as the new initial partition in the following iteration. The algorithm finishes
when no further improvement is achieved.

Fiduccia and Mattheyses [1982] improved the algorithm performance by
means of a sophisticated data structure, the bucket array. This structure guar-
antees linear access time when determining the best movement, taking advan-
tage of the bounded integer gain produced when a node crosses the interface.

The work of Prof. Vahid [1997] in this kind of adaptation is very interesting,
but his extension of the algorithm cannot be applied to any other hardware-
software partitioning environment, due to the limitations of the model used in
the formulation of the system partitioning. This model is defined over an access
graph (the SLIF graph [Vahid and Gajski 1995b]), which eases the computation
of magnitudes related to the current design (every design quality parameter is
computed by adding the different values of the attributes associated with the
nodes and edges), but introduces serious limitations:

(1) The design cannot be scheduled, which makes estimating time very rough.
(2) Since any estimation performed in the SLIF graph will be done by adding

the node attributes, the trivial solution with everything implemented as
hardware will appear in all the optimization procedures. This represen-
tation ignores the parallelism inherent to a multiprocessor architecture,
whose consideration can provide better results when using a standard pro-
cessor and a dedicated coprocessor.

The extension of the Kernighan and Lin method to solve the hardware-
software partitioning problem must take into account several features:

—The main objective of a hardware-software partitioning tool is much more
complex than the simple net cut. Different design aspects must be considered:
essentially performance goals and design costs.

—The incremental evaluation of the cost function is not possible because com-
plex measurements must be taken at every step of the algorithm.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 279

The system model presented previously compensates for all these disadvan-
tages allowing the extension of the algorithm to deal with the complex infor-
mation related to system level design. First, the cost function introduced in
Section 4.1.1 can properly handle the system design. Second, a different data
structure can improve the algorithm convergence rate. The proposed cost func-
tion perfectly characterizes the current design quality, but it is done by means
of real numbers. Thus, the integer gain-based bucket-array structure cannot be
used for the system partitioning problem.

We have defined a data structure based on maps instead of arrays. A map is
a sorted associative container that associates objects of type Key with objects
of a given type. It is also a unique associative container, meaning that no two
elements ever have the same key. We have used as a key the cost increment
associated with a given movement, and as data the node that should be moved.
Since more than one node could produce the same cost variation we have used
a multi-map structure. A multi-map is a sorted associative container that as-
sociates objects of type Key with objects of a given type. It is also a multiple
associative container, meaning that there is no limit on the number of elements
with the same key.

The proposed data structure is bounded by the number of nodes contained
by the system graph. The standard template library implementation of these
structures [Stroustrup 1997] guarantees that given a key the associated data
is found through a search with logarithmic complexity.

4.3 Hierarchical Clustering

Another classical heuristic used for circuit and architectural partitioning is
hierarchical clustering. This is a constructive method that groups pairs of par-
titioning objects based on a proximity value between the objects. The algorithm
is fully characterized after defining the following issues:

—The closeness function that provides the proximity values.
—The cut level in the cluster tree that is built upon the closeness values.

Both issues will be modified to distribute a given functionality among het-
erogeneous implementation units [López Vallejo and López 2001]. This is again
due to the different nature of the target processing units. It is obvious that a
closeness metric used to group objects that will run in a standard processor
cannot be suitable for those objects implemented with dedicated hardware.

The proposed closeness function takes into account the system model infor-
mation. In particular, it uses the estimates associated with the vertices and
edges of the system graph G(V, E) in the following way: the function groups
those partitioning objects with a clear tendency to be implemented as hard-
ware. Actually, every algorithm iteration selects the two objects with the best
time improvement when implemented as hardware (the highest latency de-
crease). Objects not grouped along the process will be assigned to the software
processing unit. The cut level is dynamically computed whenever a cluster is
grown taking into account the system constraints. It can be said that this is a
software-oriented approach, since all objects are supposed to originally reside in

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

280 • M. López-Vallejo and J. C. López

Fig. 2. Clustering process: evolution of the area and latency quality attributes versus their re-
spective constraints.

software and during the process they are extracted to the hardware processing
unit.

With this procedure, the whole cluster tree does not need to be built. Every
time a cluster is grown, the area and latency constraints (A and T) are checked.
The cluster tree construction stops whenever:

(1) The time constraint is met (Tp<T) and the hardware area value is below
its corresponding constraint (Ap< A).

(2) The hardware area constraint is exceeded (Ap> A) while the latency con-
straint is not yet met (Tp>T).

In the first case, area and latency constraints are met and the algorithm is
almost finished (only the memory constraint must be checked). In the second
case, the area constraint is met without fulfilling the timing objectives, and
therefore, a refinement phase is necessary. This can be accomplished by some
local search procedure working with objects with smaller grain (thus, the last
groups must be separated).

Our approach is based on the idea that to find a solution there must be
several points in the design space satisfying their respective constraints, as can
be seen in Figure 2. This plot shows the evolution of the area and latency quality
attributes normalized with respect to the design constraints while building the
whole cluster tree in a clustering process. Axis X shows the number of iterations
in the clustering process (number of clusters grown). As the number of clusters
added to the tree increases, the hardware area becomes larger and the design
latency should decrease. When time and area constraints are satisfied, the
memory constraint should be checked, although playing a secondary role. If
the memory constraint is met, the algorithm finishes. Otherwise the cluster
growth continues while other (primary) constraints are still under their limits.
Figure 3 illustrates the algorithm control flow described above.

Now we will take a look to the closeness function formulation. As is well
known, the exchange of information among the different processing units of
the architecture penalizes the design latency. Closeness metrics attempt to

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 281

Fig. 3. Control scheme of the clustering process.

reduce this problem. In addition, since the algorithm follows a “hardware ex-
traction” approach the time improvement obtained when extracting an object
to hardware should also be considered. The expression we have formulated as
a closeness function that takes into account both effects is the following:

Ci, j =qT ×
(

ni
1ti

sti
+ nj

1t j

st j

)
+ qC × tcom(vi, vj)

tr com(vi)+ tr com(vj)
(7)

where1ti = sti−hti represents the time improvement obtained when the object
i is moved from software to hardware. The function tcomm(vi, vj) computes the
communication between nodes vi and vj in the interface following a general
model of the architecture [López Vallejo 1999]. The weight factors qT and qC
help the designer emphasize which factor he/she wants to optimize.

As can be seen, every function term has been normalized against its soft-
ware time, in such a way that the resulting closeness value is greater for those
objects with bigger difference between hardware and software execution times.
The communication term has been normalized with respect to the addition of
communication values of the cluster object with other objects of the system
graph, its expression being the following:

tr com(vi)=
∑
vk∈V

tcom(vi, vk)/∃ (vi, vk)∈ E (8)

We have used this kind of normalization to highlight the fact that the com-
munication between two design modules must be considered only when there

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

282 • M. López-Vallejo and J. C. López

are many transfers between these modules alone. This term will be therefore
less important when communication with the rest of the design modules is
considerable.

When checking the plausibility of this closeness function several deficien-
cies in the behavior of the algorithm were observed. In some cases the algo-
rithm grouped objects with very high communication values and a good time
improvement, but with a considerable size. This halted the algorithm early be-
cause of the hardware area constraint. For this reason the closeness function
was modified to cluster objects that had the previous time and communication
considerations but which required little hardware area. The resulting function
expression is:

Ci, j =qT ×
(

ni
1ti

sti
+ nj

1t j

st j

)
+ qC × tcom(vi, vj)

tr com(vi)+ tr com(vj)
+ qA

no × MaxA
|V|

hai + ha j
(9)

where a hardware area term, controlled by its corresponding weight factor qA,
has been introduced. This term has a clear meaning: its value is greater when
the area of the resulting cluster is smaller than the average system area. This
average area is computed by dividing the area of the all-hardware solution,
MaxA, by the total number of vertices of the system graph G(V, E) given by
the cardinal of V, |V|. The parameter no is the number of nodes integrating
the cluster, no= |i| + | j |. As will be described, each clustering object (single or
composed) will be characterized with the same attributes as the nodes of the
system model, hai, hti, and so forth. This formulation allows us to handle objects
with different size or various components in a uniform way.

In the same way we can introduce a term for considering the memory space.
In this case, since we are extracting modules to hardware, the memory term
must try to group objects with large-sized memory. This value is also computed
using the parameter MaxM provided by the all-software solution. The final
expression for the closeness function for two objects, i, j , is:

Ci, j = qT ×
(

ni
1ti

sti
+ nj

1t j

st j

)
+ qC × tcom(vi, vj)

tr com(vi)+ tr com(vj)

+qA
no × MaxA

|V|
hai + ha j

+ qM
ssi + ss j

no × MaxM
|V|

(10)

It is important to remark that the resulting clusters must exhibit the same
characteristics as the basic objects, in such a way that no cumulative error is
introduced. This characterization allows us to use the same closeness function
throughout the algorithm’s execution. Consequently, we define the following
approximation to characterize a cluster k= i ∪ j :

—The resulting hardware area is computed by adding up of the hardware area
of the nodes that integrate the cluster.

hak =
∑
vn∈pi

han +
∑

vm∈pj

ham (11)

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 283

This estimation is quite rough, because it does not take into account resource
sharing. Nevertheless the approach is completely valid, and we leave for
future study the improvement of the area-estimation procedures.

—The cluster memory space is computed as the sum of the memory sizes of its
composing vertices.

ssk =
∑
vn∈pi

ssn +
∑

vm∈pj

ssm (12)

—The cluster execution time in a standard processor is the sum of the software
execution times, of its composing nodes, due to the code serialization.2

stk =
∑
vn∈pi

stn +
∑

vm∈pj

stm (13)

—The resulting hardware execution time can be computed in two different
ways:
(1) If there are no data dependencies among the cluster vertices, concurrency

is possible, and the hardware execution time is given by:

htk =max{htn with vn ∈ pi ∪ pj } (14)

(2) If there are data dependencies the cluster vertices must be scheduled.
Since at every algorithm iteration a system scheduling is performed, we
have the starting and finishing times of all the vertices, so the cluster
execution time is therefore:

htk =max{tend(vn)} −min{tend(vn)} − tidle with vn ∈ pi ∪ pj (15)

where tidle is the time the hardware co-processor is idle between
min{tend(vn)} and max{tend(vn)}. This kind of timing evaluation has two
clear advantages. First, there is no cumulative error, because htk is recal-
culated at every step of the algorithm. Second, the computational com-
plexity is not greater, since we take advantage of the scheduling per-
formed to evaluate design constraints.

Regarding the cluster edges, we will only consider the edges coming in and
out of the cluster, canceling the edges within the cluster vertices. The exter-
nal edges keep their original attributes, because the cluster will be considered
exactly as a new system vertex.

Even though hierarchical clustering has been used for hardware-software
partitioning, our approach is very different from these previous implementa-
tions. It is mainly due to the formulation of the closeness metric and the mod-
ification of the control scheme of the algorithm. In Vahid and Gajski [1995a]
different and interesting closeness metrics are defined, but their application is
not straightforward and their use is not clearly described. We believe that the

2The cluster execution time in the software processor only considers the time spent in this particu-
lar execution unit, which is subject to improvement if implemented as standard hardware. It may
happen that due to communication delays the finishing time of the cluster is longer than the value
estimated here. This is not important in our model, because the communication cost is already con-
sidered when the cluster is grown and scheduling is performed. stk only characterizes an intrinsic
parameter of the cluster.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

284 • M. López-Vallejo and J. C. López

closeness metrics must be different for the hardware and the software parti-
tions. Thus, the clustering procedure needs to be modified and specific metrics
for the different implementation units must be defined. Additionally, we have
defined a problem model which helped us introducing important modifications
to the original algorithm. In Barros et al. [1993], other closeness metrics are
introduced, mainly based on the specification language UNITY. Nevertheless,
cost issues, as we propose in this work, are not considered.

5. KNOWLEDGE-BASED PARTITIONING

Knowledge-based techniques can be used to solve many optimization problems
by working at a higher abstraction level [Newell 1982], because the knowledge
acquired by the designers can be modeled and conserved, even if the technol-
ogy used to develop the partitioning tool becomes obsolete. We have developed a
fuzzy logic based expert system, SHAPES (Software-Hardware Partitioning Ex-
pert System [López Vallejo et al. 1998]), following the CommonKADS method-
ology [Breuker and Van de Velde 1993]. This tool takes advantage of two impor-
tant contributions of artificial intelligence: the use of an expert’s knowledge in
the decision making process and the possibility of dealing with imprecise and
usually uncertain values by the definition of fuzzy magnitudes.

The main benefits of a knowledge-based approach are:

—The designer’s knowledge is acquired for automatic handling, while the re-
sults obtained by traditional procedures must be reviewed by a designer.

—The whole process can be traced.
—Knowledge of the system can be increased by applying it to different cases.

There is also a solid rationale to use fuzzy logic:

—Since the designer’s knowledge is imprecise in nature, fuzzy logic can be used
to include the subjectivity implicit in the designer’s reasoning.

—Most data are estimates, which can be easily modeled with fuzzy linguistic
variables. For instance, the area estimate of a block is modeled as a linguistic
variable with the terms {small, medium or large} (Figure 4). Since this value
depends on the particular system under evaluation, the linguistic variable
has been dynamically defined according to a granularity measure, σ :

σ = 100
i

i being the number of vertices to consider.
—Some of the parameters defined along the process exhibit intrinsic looseness.

For example, Figure 5 shows the implementation value of a task, which re-
flects the tendency of the task to be implemented as hardware or software. In
this case, we can talk for instance about a quite hardware or a very software
block.

The expert system construction has adopted a knowledge-modeling ap-
proach, following the knowledge level and knowledge separation principles.
The expertise model is, then, the center of the knowledge-based system
development.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 285

Fig. 4. Linguistic variable Area.

Fig. 5. Linguistic variable Implementation.

5.1 Expertise Model of Hardware-Software Partitioning

Three main issues must be addressed when an expertise model is constructed:
an ontology of the domain knowledge, the task knowledge and the inference
structure. The domain ontology provides the most important concepts and re-
lations of a given domain. The task knowledge specifies how a task is related
to the task objective. Actually it describes the way a goal can be achieved by
means of some control mechanisms. The inference structure is a compound of
predefined inference types (how the domain concepts can be used to make in-
ferences, represented as ellipses) and domain roles (rectangles), as can be seen
in Figure 6. For the purpose of this paper, we will only describe the inference
structure. We refer readers interested in deeper explanations of the expertise
model to [López Vallejo et al. 1999].

The inference structure shown in Figure 6 presents a general view of the
problem solving method (PSM) chosen to implement system partitioning and
the knowledge used by the inferences. This generic inference structure will be
adapted to our problem.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

286 • M. López-Vallejo and J. C. López

Fig. 6. Inference structure for hardware-software partitioning.

According to the CommonKADS library [Breuker and Van de Velde 1993], the
partitioning task has been classified as a configuration task with antagonistic
constraints. The Propose and Revise (P&R) problem solving method, whose
inference structure is shown in Figure 6, has been followed. An initial heuristic
classification is carried out before the standard P&R for providing additional
information to the propose task.

Following the inference structure, four inferences can be distinguished:
match (Section 5.2.1), assign (Section 5.2.2), evaluate (Section 5.2.3), and select
(Section 5.2.4). This inference structure has guided the knowledge-acquisition
process.

5.2 Partitioning Design Model

The design of the system has followed a structure-preserving approach, defin-
ing a module for each knowledge source of the defined inference structure
(Figure 6).

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 287

5.2.1 Match (Heuristic Classification). The first step in SHAPES is to pro-
vide additional information for the P&R method. It is performed by means of
a heuristic classification module. In this module, the observables are the es-
timates attached to every vertex properly converted into fuzzy variables. It is
important to remark that all the fuzzy sets are dynamically defined, because
their values are relative to the specific example under study (see Figure 4).

The heuristic rules stored in the knowledge base match the input vari-
ables and the output variable, called implementation. The terms this vari-
able can adopt are {Hardware, Quite-Hardware, Unknown, Quite-Software, and
Software}. This variable gives an idea of the intrinsic tendency of a process
to be implemented in special purpose hardware or as software running on a
standard processor. An example of the rules of this module follows:

if hw-area is small and time-improvement is high
and number-executions are not few

then implementation is very hardware

5.2.2 Assign. The assign inference provides the first solution proposal by
allocating part of the processes to hardware and the rest to software. In this
module the observables are the system blocks with their related implementa-
tion values and the system constraints (maximum hardware area, A, maximum
execution time, T , and maximum memory space, M). The module produces as
output a threshold that determines the hardware-software boundary.

The threshold value is obtained after estimating the “hardness” of the spec-
ification requirements: how critical (or not) the constraints are, regarding the
extreme values of the system performance (all hardware and all software solu-
tions). Upon this parameter, a system configuration is composed.

Every process implementation variable is defuzzified to obtain its crisp value
and consequently an initial partition. It is necessary to provide standard output
results since they will be used in standard tools like the scheduler. This crisp
classification output is the set of input blocks ordered by their implementation
degree: value 0 stands for hardware and 1 for software. For instance, Figure 7
shows the results for an example with 23 processes after performing the as-
signment operation, defuzzifying the threshold and implementation values.

5.2.3 Evaluate. The evaluate module computes the different parameters
that characterize the design obtained after assignment. These parameters will
give an idea of the quality and acceptability of the proposal. This is the only
module not based on knowledge. Here four parameters have been considered:

(1) The estimation of the area needed to implement the hardware part, Ap.
(2) The estimation of the memory space required by the software code and data,

Mp.
(3) The scheduling of the assigned process graph, which gives the final execu-

tion time or latency, Tp.
(4) The communication costs in the hardware-software interface, which con-

sider two different aspects: the total number of transfers that take place
in the hardware-software interface, and the communication penalty, which

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

288 • M. López-Vallejo and J. C. López

Fig. 7. Classification and assignment results for the case study.

computes the global delay introduced in the system execution time due to
specific communication waiting.

Once these parameters have been calculated, the select inference will check
the plausibility of the proposed partition. With this purpose, additional infor-
mation is then generated to determine the state of the constraints. Specifically,
the following variables are defined:

—The area, memory and time overhead :1A= A−Ap,1M =M−Mp,1T =T−
Tp.

—The communication penalty.
—The processor and ASIC throughputs, defined as:

τproc=
∑

i ∈ SW
sti

Tp
τasic=

∑
i∈HW

hti

Tp

5.2.4 Select. The select inference executes the most complex inference in
SHAPES. This is a composite inference where two other inferences have been
defined. Its purpose is to revise the proposed solution and to search for another
proposal. Consequently, the select strategy has been divided into two stages:

(1) Diagnosis, which studies how closely the solution comes to the optimum
and how many corrections are needed.

(2) Operation, which performs the selection of a new proposal based on the
previous information and a knowledge base of previous experiences.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 289

Fig. 8. Control flow within the composed select inference.

Figure 8 shows the dependencies among these sub-tasks, specifying the
control knowledge within this inference. The diagnosis module performs a
simple analysis, identifying the state of the design regarding initial goals
and constraints and carrying out the revision procedure of the P&R PSM. In
this simple diagnosis inference the following observable categories have been
considered:

—The violation or satisfaction of the hardware area and global time constraints
(upon their respective gaps).

—The balance of the proposal, regarding the processor and ASIC throughputs
(τproc/τasic ≈ 1).

—Which vertices are related to the communication penalty.

Taking these symptoms into account, two kinds of revisions can be performed.
First, if the system constraints are not met, the method must refine the solution
to find a feasible one. Second, if constraints are met, but the attribute values
are very large, the solution can be refined to reduce costs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

290 • M. López-Vallejo and J. C. López

Table II. Set of Examples Provided by Dr. Srinivasan
Characterized by the Number of Vertices and Parameters of

the Extreme Solutions

Example Vertices MaxA MinT MaxT MaxM
lu 9 69315 74 454 19595
fft 15 106355 145 842 33619
dct 9 21952 2231 7312 329692
dct16 36 34944 6712 20680 1143982
laplace 9 73009 79 386 17811
mean 9 132626 99 607 27244
reg 8 3379 1890 6714 303288

The operation module performs the proposal of the new partition, if needed.
There are two non-exclusive alternative strategies to choose:

—To migrate processes from hardware to software or vice versa according to
the global constraints. This is carried out by tuning the threshold.

—To improve the partition while attempting to minimize the communication
on the hardware-software boundary. This is performed by communication-
based reordering, that modifies the classification results according to the
communication penalty produced on the interface.

6. ANALYSIS OF RESULTS

All the techniques have been applied to a set of examples provided by Dr. Srini-
vasan [Srinivasan et al. 1998], whose characterization appears in Table II:
the size of the system graph and the values of the extreme implementations,
which bound the design space. The examples are described as directed and
acyclic graphs of coarse-grain tasks. We have applied the four partitioning tech-
niques to every example using different constraints (always within the bounds
provided by the extreme solutions). The examples have been subjected to in-
tensive experiments, the results of which are summarized in Table III. These
results will be analyzed from both qualitative and quantitative perspectives.3

The qualitative aspects will be mainly represented by the resulting cost of the
solutions obtained from each method, under different constraints. The quanti-
tative issues will be shown by means of the computation time resulting from
each technique.

For simulated annealing and K&L the penalty-based cost function
(Section 4.1.1) has been used. This formulation has been chosen after check-
ing the behavior of all the proposed cost functions, and proving that this was
the best for a general system partitioning problem. Therefore, the quality at-
tributes are always optimized within their respective constraints. The resulting

3These results cannot be compared to the ones presented in [Srinivasan et al. 1998] because in this
work the partitioning phase integrates hardware design exploration, while we have chosen a given
hardware implementation for every task in our experiments.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 291

Table III. Results Obtained with the Examples Provided by the University of Cincinnati

Constraints Simulated Annealing Kernighan&Lin
Ex. A T M Ap Tp Mp Cs. Ap Tp M p Cs.
LU 15000 400 17000 9110 404 14856 0.588 38501 176 6099 0.806

30000 200 16000 27311 206 9594 1.177 25604 193 9757 0.656
50000 150 12000 47611 126 1360 0.624 47611 126 1360 0.849

FFT 30000 400 25000 32464 424 19902 2.674 30530 470 22020 5.986
60000 250 25000 58092 255 14747 0.824 61619 256 10928 1.035
80000 200 15000 78242 199 2860 0.611 73337 195 8180 0.772

DCT 16000 4000 100000 13720 2822 73212 0.796 13720 2825 60076 0.529
13000 5500 200000 5488 5372 164125 0.652 8232 4254 134701 0.489
20000 3000 120000 13720 2822 73212 0.849 8232 4762 269616 0.538

DCT16 10000 20000 800000 8736 15510 796866 0.594 8736 14450 761912 0.724
20000 15000 800000 — — — — 17472 9280 364505 0.560
30000 16000 750000 — — — — 17472 9280 415821 0.404

Laplace 20000 250 16000 16059 251 11232 0.615 20099 260 14894 1.550
30000 200 15000 29401 179 7280 0.611 31668 229 10023 1.040
50000 200 12000 38358 137 4200 0.471 14588 320 13345 0.488

Mean 60000 300 20000 55679 294 13938 0.792 55679 294 13938 0.942
80000 500 10000 76252 313 10164 0.616 100354 239 5740 0.738

120000 200 10000 116517 127 3124 0.513 116517 127 3124 0.513
Reg 3000 2500 40000 2407 2590 13180 0.779 2113 2380 29029 0.682

2500 3000 35000 2407 2590 13180 0.585 2407 2590 13180 0.585
2000 4000 50000 2208 2313 26918 2.181 1435 2030 44043 0.455

Constraints Clustering Expert System
Ex. A T M Ap Tp Mp Cs. Ap Tp M p Cs.
LU 15000 400 17000 9619 356 16463 0.556 14377 333 13112 0.63

30000 200 16000 25604 193 9757 0.606 30362 170 6406 0.60
50000 150 12000 34714 143 5018 0.536 34714 143 5018 0.53

FFT 30000 400 25000 28764 557 18633 23.89 27957 456 23576 1.27
60000 250 25000 59054 265 7880 1.573 60723 244 12797 0.88
80000 200 15000 78192 172 3526 0.575 74605 207 8054 0.68

DCT 16000 4000 100000 10976 3675 75013 0.556 13720 3390 38136 0.55
13000 5500 200000 5488 5372 164125 0.502 10976 3408 85747 0.50
20000 3000 120000 13720 2825 48779 0.529 13720 2825 48779 0.53

DCT16 10000 20000 800000 4368 16240 776552 0.472 7644 14500 535014 0.53
20000 15000 800000 7644 14500 628607 0.483 17472 9287 258506 0.52
30000 16000 750000 5460 15660 721591 0.444 17472 9287 220625 0.49

Laplace 20000 250 16000 17132 274 9013 2.024 16059 251 11232 0.72
30000 200 15000 23921 213 7631 1.243 29401 179 7280 0.61
50000 200 12000 37263 141 3679 0.536 43989 115 2814 0.47

Mean 60000 300 20000 43865 386 15438 13.01 55241 292 21751 0.74
80000 500 10000 76137 260 9698 0.538 72316 259 9898 0.59

120000 200 10000 103603 176 4676 0.570 105160 135 5022 0.50
Reg 3000 2500 40000 2407 2590 13180 0.779 2407 2590 13180 0.78

2500 3000 35000 2407 2590 13180 0.585 2167 2863 11285 0.59
2000 4000 50000 1435 2030 44043 0.455 1873 3354 47005 0.56

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

292 • M. López-Vallejo and J. C. López

Fig. 9. Cost values obtained when running the Cincinnati University examples.

cost function is:

F(P) = kA × Ap

A
+ kT × Tp

T
+ kM × Mp

M
+ kcAFC(A, Ap)+ kcTFC(T, TP)+ kcMFC(M , Mp) (16)

The following weight factors have been applied in all tests: ka= 0.3, kt = 0.4,
km= 0.3 and kci = 150. These factors allow the designer to put emphasis on the
desired design attribute. In these examples, the time goal is slightly empha-
sized. If these factors are appropriately chosen, they can also help to interpret
the results. For instance, when

∑
i ki = 1 (as in our case) thenF(P)= 1 is a figure

of merit, since (1) constraint overheads will produce cost values much greater
than 1 (due to the penalty weight factor kci = 150), (2) attribute values tuned
to the constraints will produce costs close to the unity, and, (3) if the solution
could be optimized (penalty terms are used) the cost value will be lower than 1.

For hierarchical clustering and the expert system, once we have the results
provided by these methods (driven by the closeness function or the knowledge
bases respectively), we have used the same cost function to characterize the
quality of the solutions found and to compare results more easily.

6.1 Solution Quality

In Figure 9 we have represented the cost of the solutions computed by all the
methods under evaluation. Each example has been checked with four sets of
constraints (defined in Table III) represented in the figure as four points in the
axis X. These four sets of constraints have been ordered from harder to softer.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 293

Fig. 10. CPU times (in seconds) for the different partitioning techniques with the Cincinnati
University examples.

A first analysis of the results shows that for hard constraints the heuristic
algorithms (clustering and K&L) cannot find a valid solution. Even worse, these
algorithms provide solutions quite far from the valid region. On the other hand,
simulated annealing and the expert system can find solutions for these hard
constraints or at least give solutions not far from the allowed exploration region.
We can conclude that these two methods provide the best results concerning
solution quality. If the constraints are not too hard, all the methods can provide
a workable solution.

6.2 Computation Time

The computation time of the different methods under study has been repre-
sented in the histogram of Figure 10. Axis Y represents the CPU time spent
by the example resolution (simulated annealing time appears divided by 15 for
the sake of clarity).

After executing all the examples and examining Figure 10, it is clear that the
fastest technique is the clustering algorithm. The reason why this procedure
is faster is that it performs the system scheduling very few times (only when
a cluster is grown). The other classical algorithms must schedule the design at
each trial. Consequently, simulation annealing requires the longest computa-
tion time, since the number of explored points of the design space is much more
larger than in the other methods.

The expert system expends more time than the K&L and the clustering, but
always within reasonable values and much lower than the simulated annealing.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

294 • M. López-Vallejo and J. C. López

Fig. 11. CPU times (in seconds) for the different partitioning methods vs. the example size.

This longer execution time is partly due to the use of an interpreted inference
engine [Lyndon B. Johnson Space Center 1993]. A future study could seek to
obtain a faster version of the expert system by compiling its knowledge bases.
This has not been done because of the continuous refinement of the system rules.

Finally, to test the behavior of the partitioning techniques when working
with bigger examples we have generated several system graphs with a greater
number of vertices (from 50 to 500 nodes). Figure 11 represents the execution
times obtained after running these examples, ordered by size. These experi-
ments confirmed the results obtained previously.

6.3 Lessons Learned

The experiments we have performed with the various partitioning implementa-
tions have shown that this problem can be solved by very different techniques.
We can conclude, as a first lesson, that it is very important to build the differ-
ent implementations over a complete and robust model, which holds all vital
information and allows us to deal with different problems.

Simulated annealing has provided the best results from a qualitative point
of view, but its computations take a very long time. This occurs even after
applying a dynamic cooling schedule, which facilitates the algorithm conver-
gence. On the other hand, the experiments performed with K&L and clustering
have shown that these algorithms produce a good trade-off between quality of
results and computation time, even though they show an irregular behavior.
The K&L algorithm depends too much on the initial solution (here calculated
randomly). This problem can be easily solved by starting from a better solution

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 295

Table IV. General Characteristics of the Different Techniques

Method Limit Granularity Advantages Drawbacks Application
Simulated 50 coarse Quality Slow Reference
Annealing Regularity
Expert System 75 coarse Quality Interpreted System

Regularity Partitioning
Information Design help

Kernighan&Lin 100 do not care fast Init. solution Refinement
dependent

Clustering 500 fine fast Constraint Pre-
dependent processing

or by running the program several times and taking the best solution, since its
computation time is not high.

Hierarchical clustering can be used to perform a fast design-space explo-
ration, especially if a refinement stage is performed later. This method can
work with very large system graphs due to its short computation time. Conse-
quently, we recommend its use for fine grain descriptions as a pre-partitioning
stage. After this step the design space is reduced and other techniques can work
with objects of different granularity. We have obtained excellent results with
the clustering technique followed by K&L.

Finally, the tests of the expert system have shown that this is the best system
partitioning procedure, both qualitatively and quantitatively. This method has
added value since it provides important information to the designer and can be
run interactively. This interaction is very easy because of the use of linguistic
variables to model the information. For this procedure only coarse-grain graphs
can be used, because that is the granularity that specialists employ to model
the knowledge.

Table IV summarizes the previous conclusions in a schematic way. This table
also shows the maximum number of nodes every technique can deal with and
the recommended granularity and applications.

7. CONCLUSIONS

The evaluation of different system implementation possibilities is a key issue
in complex system design. We have shown how this problem can be solved by
means of very different partitioning techniques. The problem resolution has
been based on the definition of a common system model that allows the com-
parison of different procedures.

The evaluated techniques have been three classical partitioning algorithms
and a knowledge based system. The classical circuit partitioning algorithms
have been subject to important extensions, since the inclusion of system level
issues requires strong modifications in these procedures. These extensions have
improved previous implementations, because they include some issues pre-
viously not considered. In simulated annealing and K&L system constraints
have been integrated into the cost function in a general and efficient way. In
the clustering implementation the control scheme of the algorithm has been

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

296 • M. López-Vallejo and J. C. López

modified and new closeness metrics have been defined. Artificial intelligence
techniques are very promising to model and work with system level issues as
a consequence of the quality of the results and the extra information provided
to the user.

The use of these techniques has proven to be effective, as some experiments
have shown. Table IV summarizes the conclusions we have drawn after execut-
ing and comparing the different system partitioning methods.

A future study could extend the system model to encompass other quality
attributes, like power consumption or the degree of parallelism. Also, the final
refinement of the knowledge bases of the expert system and their compilation
are currently under study.

ACKNOWLEDGMENTS

We would like to thank Carlos Angel Iglesias for his insights into artificial
intelligence; Antonio Garcia Quintas for his contribution with the development
of the scheduler; and Jesús Grajal for his help in the formulation of the cost
function.

REFERENCES

BARROS, E., ROSENSTIEL, W., AND XIONG, X. 1993. HW/SW Partitioning with UNITY. In Handouts
of the 2nd International Workshop on HW-SW Codesign.

BREUKER, J. A. AND VAN DE VELDE, W., Eds. 1993. The CommonKADS Library. Netherlands Energy
Research Foundation ECN, Swedish Institute of Computer Science, Siemens, Univ. of Amsterdam
and Free University of Brussels. Tech. rep., ESPRIT Project P5248.

CARRERAS, C., LÓPEZ, J. C., LÓPEZ-VALLEJO, M. L., DELGADO-KLOOS, C., MARTı́NEZ, N., AND SÁNCHEZ, L.
1996. A Co-Design Methodology Based on Formal Specification and High-Level Estimation. In
Proceedings of the Workshop on HW/SW Co-Design.

DICK, R. AND JHA, N. 1998. Mogac: a multiobjective genetic algorithm for hardware-software
cosynthesis of distributed embedded systems. IEEE Trans. CAD Int. Circ. Syst. 17, 10 (Octo-
ber), 920–935.

ELES, P., PENG, Z., KUCHCINSKI, K., AND DOBOLI, A. 1997. System Level Hardware/Software Par-
titioning based on Simulated Annealing and Tabu Search. Design Automation for Embedded
Systems 2, 1 (January), 5–32.

ERNST, R., HENKEL, J., AND BENNER, T. 1993. Hardware-Software Cosynthesis for Microcontrollers.
IEEE Des. Test Comput. 64–75.

FIDUCCIA, C. AND MATTHEYSES, R. 1982. A Linear-time Heuristic for Improving Network Partitions.
In Proceedings of the Design Automation Conference. IEEE.

GUPTA, R. K. AND MICHELI, G. D. 1993. HW-SW Cosynthesis for Digital Systems. IEEE Des. Test
Comput. 29–41.

HENKEL, J. AND ERNST, R. 2001. An approach to automated hardware/software partitioning using
a flexible granularity that is driven by high-level estimation techniques. Trans. VLSI Syst. 273–
289.

HUANG, M. D., ROMEO, F., AND SANGIOVANI-VINCENTELLI, A. 1986. An Efficient General Cooling Sched-
ule for Simulated Annealing. In Proceedings of the Design Automation Conference. 381–384.

KALAVADE, A. AND LEE, E. A. 1997. The Extended Partitioning Problem: Hardware/Software Map-
ping, Scheduling and Implementation-bin Selection. J. Design Automat. Embedded Syst. 2, 2
(March), 125–164.

KERNIGHAN, B. W. AND LIN, S. 1970. An Efficient Heuristic Procedure for Partitioning Graphs. The
Bell System Technical Journal. 291–307.

KIRPATRICK, S., GELATT, C., AND VECCHI, M. 1983. Optimization by simulated annealing. Sci-
ence 220, 4598, 671–680.

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

On the Hardware-Software Partitioning Problem • 297

LÓPEZ VALLEJO, M., GRAJAL, J., AND LÓPEZ, J. C. 2000. Constraint-driven System Partitioning. In
Proceedings of DATE’00. 411–416.

LÓPEZ VALLEJO, M., IGLESIAS, C., AND LÓPEZ, J. C. 1998. A Knowledge based System for Hardware-
Software Partitioning. In Proceedings of DATE’98. 914–915.

LÓPEZ VALLEJO, M. AND LÓPEZ, J. C. 2001. Multi-way Clustering Techniques for System Level
Partitioning. In Proceedings of the 14th IEEE ASIC/SOC Conference. 242–247.

LÓPEZ VALLEJO, M., LÓPEZ, J. C., AND IGLESIAS, C. 1999. Hardware-Software Partitioning at the
Knowledge Level. J. Applied Intell. 173–184.

LÓPEZ VALLEJO, M. L. 1999. Hardware-software partitioning methods for the design of heteroge-
neous systems. Ph.D. thesis, Universidad Politécnica de Madrid.

LUENBERGER, D. G. 1984. Linnear and non-Linear Programming. Addison-Wesley.
LYNDON B. JOHNSON SPACE CENTER. 1993. Clips’s Reference Manual. Volume II, Advanced Program-

ming Guide. CLIPS Version 6.0. Lyndon B. Johnson Space Center, Software Tecnology Branch.
MADSEN, J., GRODE, J., AND KNUDSEN, P. 1997. Hardware/software partitioning using the lycos sys-

tem. Hardware/Software Codesign: Principles and Practices (chapter 9). Kluwer Academic Pub-
lishers.

MICHELI, G. D. 1994. Guest editor’s introduction: Hardware-Software Codesign. IEEE Micro. 8–9.
NEWELL, A. 1982. The knowledge level. Artificial Intelligence. 87–127.
NIEMANN, R. AND MARWEDEL, P. 1996. Hardware/software partitioning using integer programming.

In Proceedings of the European Design & Test Conference, 1996.
SRINIVASAN, V., RADHAKRISHNAN, S., AND VEMURI, R. 1998. Hardware Software Partitioning with

Integrated Hardware Design Space Exploration. In Proceedings of DATE’98. Paris, France, 28–
35.

STROUSTRUP, B. 1997. The C++ Programming Language. Third edition. Addison-Wesley.
VAHID, F. 1997. Modifying Min-Cat for Hardware and Software Functional Partitioning. In Pro-

ceedings of the Workshop on HW/SW Co-Design CODES/CASHE’97. Braunschweig, Germany.
VAHID, F. AND GAJSKI, D. D. 1995a. Clustering for Improved System-level Functional Partitioning.

In Proceedings of ISSS’95. 28–33.
VAHID, F. AND GAJSKI, D. D. 1995b. SLIF: A Specification-Level Intermediate Format for System

Design. In Proceedings EDAC’95.
WOLF, W. H. 1997. An Architectural Co-synthesis Algorithm for Distributed Embedded Comput-

ing Systems. IEEE Trans. VLSI Syst. 5, 2 (June), 218–229.

Received October 2000; revised January 2003; accepted January 2003

ACM Transactions on Design Automation of Electronic Systems, Vol. 8, No. 3, July 2003.

